Student			
Number:			
Class:			

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION 2017

MATHEMATICS EXTENSION 2

General Instructions:

- Reading Time: 5 minutes.
- · Working Time: 3 hours.
- Write in black pen.
- Board-approved calculators & templates may be used.
- · A Reference Sheet is provided.
- In Questions 11-16, show all relevant mathematical reasoning and/or calculations.
- Marks may not be awarded for careless or badly arranged working.

Total Marks 100

Section I: 10 marks

- Attempt Questions 1-10.
- Answer on the Multiple Choice answer sheet provided.
- Allow about 15 minutes for this section.

Section II: 90 Marks

- Attempt Question 11-16.
- Answer on lined paper provided. Start a new page for each new question.
- · Allow about 2 hours & 45 minutes for this section.

The answers to all questions are to be returned in separate, *stapled* bundles, clearly labeled as Question 11, Question 12, etc.

Each question must show your Candidate Number.

JRAHS Trial HSC 2017

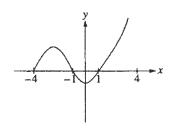
Mathematics Extension 2

Page 1 of 16

QUESTION ONE

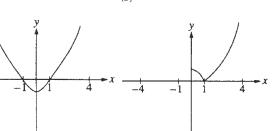
Which of the following describes the conic section given by

$$4x^2 + 7y^2 + 32x - 56y + 148 = 0$$
?

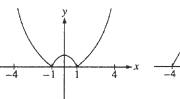

- (A) Ellipse with centre (-4,4) and foci at $(4 \pm \sqrt{3}, -4)$.
- (B) Hyperbola with centre (-4,4) and foci at $(4,-4\pm\sqrt{3})$.
- (C) Ellipse with centre (-4,4) and foci at $(-4 \pm \sqrt{3},4)$.
- (D) Hyperbola with centre (-4,4) and foci at $(-4,4\pm\sqrt{3})$.

QUESTION TWO

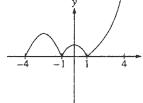
If $\sum_{n=0}^{\infty} \cos^{2n} \theta = 5$, what is the value of $\cos 2\theta$?


- (A) $\frac{4}{5}$
- (B) $\frac{3}{5}$
- (C) $\frac{2}{5}$
- (D) $\frac{1}{5}$

QUESTION THREE



The graph of y = f(x) is shown above. Which of the following is a possible graph of y = f(|x|)?


(A)

(C)

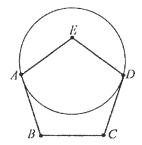
(D

Examination continues on next page ...

QUESTION FOUR

JRAHS Trial HSC 2017

Without evaluating directly, which of the following integrals is positive?


(A)
$$\int_{-1}^{1} \frac{\sin^{-1} x}{1 + x^2} dx$$

(B)
$$\int_{-1}^{1} \frac{\cos^{-1} x}{1 + x^2} dx$$

(C)
$$\int_{-1}^{1} \frac{\tan^{-1} x}{\cos x} dx$$

(D)
$$\int_{-1}^{1} (x^2 - 1)e^{-x^2} dx$$

QUESTION FIVE

The diagram above shows a regular pentagon ABCDE, and a circle of unit radius that is tangent to \overline{DC} at D and to \overline{AB} at A. What is the length of the arc AD that is contained within the pentagon?

(A)
$$\frac{2\pi}{5}$$

(B)
$$\frac{37}{5}$$

(C)
$$\frac{4\pi}{5}$$

(D)
$$\frac{6\pi}{5}$$

Mathematics Extension 2

Page 4 of 16

QUESTION SIX

Let $f(x) = ax^4 - bx^2 + x + 5$ with f(-3) = 2. What is the value of f(3)?

- (A) 8
- (B) 1
- (C) -2
- (D) -5

QUESTION SEVEN

If the complex number z satisfies z + |z| = 2(1 + 4i), which of the following is $|z|^2$?

- (A) 68
- (B) 100
- (C) 208
- (D) 289

JRAHS Trial HSC 2017

Mathematics Extension 2

Page 5 of 16

QUESTION EIGHT

For $xy = e^{xy}$, what is $\frac{dy}{dx}$ where y is an implicit function of x?

- (A) $\frac{x}{y}$
- (B) $-\frac{a}{y}$
- (C) $\frac{3}{3}$
- (D) $-\frac{y}{x}$

QUESTION NINE

A funfair game has the following setup: a player may toss two balls into any of k chutes, and if both balls are returned via a single chute, the player wins. What is the probability that both balls enter via different chutes, but are returned via the same chute, where that chute is neither of the chutes by which any ball entered?

(A)
$$\frac{k^2 - 3k + 2}{k^3}$$

(B)
$$\frac{k^3 - 4k^2 + 5k - 2}{k^3}$$

(C)
$$\frac{k^2 - k}{k^2 - 5k + 6}$$

(D)
$$\frac{k^2 - 2k + 2}{k^4}$$

Mathematics Extension 2

Page 6 of 16

QUESTION TEN

Suppose f and g are differentiable functions such that g(x) > 0 for all x and f(0) = 1.

If $\frac{d}{dx}(f(x)g(x)) = f(x)g'(x)$, which of the following is f(x)?

- (A) 0
- (B) 1
- (C) e^x
- (D) g(x)

JRAHS Trial HSC 2017

Mathematics Extension 2

Page 7 of 16

QUESTION ELEVEN (15 Marks) Use a SEPARATE writing booklet.

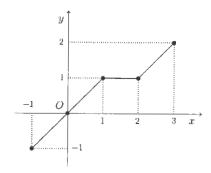
Marks

(a) Define
$$I_n = \int_0^1 x^n e^x dx$$
.

(i) Show that
$$I_n = e - nI_{n-1}$$
.

2

2


2

(b) (i) Show that
$$\int_{0}^{a} f(a-x) dx = \int_{0}^{a} f(x) dx$$
.

(ii) Hence evaluate
$$\int_0^{\frac{\pi}{2}} \frac{\cos^n x}{\sin^n x + \cos^n x} dx$$
, for n a positive integer.

3

(c)

The diagram above shows a piecewise function f(x) comprised of linear segments for all real x over [-1,3]. Sketch, over the real numbers, the graphs of:

(i)
$$y = \log_e f(x)$$

2

(ii)
$$y = \frac{1}{f(x)}$$

2

(iii)
$$y^2 = f(x)$$

2

Mathematics Extension 2

Page 8 of 16

QUESTION TWELVE (15 Marks) Use a SEPARATE writing booklet.

Marks

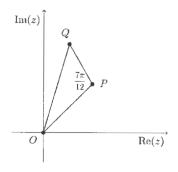
(a) Solve
$$z^2 + iz + 1 = 0$$
.

2

(b) Sketch the region in the Argand plane where

2

$$1 \le |z - 2i| \le 2$$

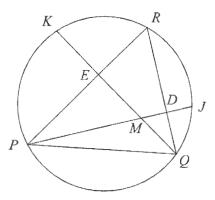

and

$$-\frac{\pi}{4} \le \arg(z - 2i) \le \frac{\pi}{4}$$

hold simultaneously.

(c)

3


The diagram above shows triangle OPQ in the Argand plane with the point P being represented by the complex number $\frac{3}{\sqrt{2}} + i\frac{3}{\sqrt{2}}$. If $\angle OPQ = \frac{7\pi}{12}$ and |PQ| = 2, find, in Cartesian form, the complex number representing the point Q.

JRAHS Trial HSC 2017

Mathematics Extension 2

Page 9 of 16

(d)

In the diagram above, C is the circumcircle of triangle PQR. The altitude PD is produced to meet C at J, and the altitude QE is produced to meet C at K. Also, let the altitudes intersect at the point M.

- (i) Copy the diagram and state why quadrilaterals PQDE and REMD are cyclic.
- (ii) Prove that PR bisects $\angle KRM$.

2

2

2

(iii) Hence show that KR = JR.

....

(e) In how many ways can seven identical cats be put into three identical pens so that all of the pens are occupied? You must state reasoning.

Mathematics Extension 2

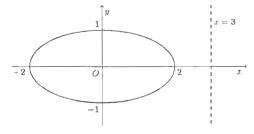
Page 10 of 16

QUESTION THIRTEEN (15 Marks) Use a SEPARATE writing booklet.

Marks

2

- (a) If $P(x) = x^4 8x^3 + 18x^2 27$, show that P(x) has a multiple zero and determine
- (b) Let $P = (a \sec \theta, b \tan \theta)$ be a point on the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$.
 - (i) Show that the equation of the tangent to the hyperbola at the point P is given by


 $bx \sec \theta - ay \tan \theta = ab$.

(ii) Show that the tangent intersects the asymptotes of the hyperbola at the points Q and R where

$$Q = (a(\sec \theta + \tan \theta), b(\sec \theta + \tan \theta))$$
 and
$$R = (a(\sec \theta - \tan \theta), -b(\sec \theta - \tan \theta))$$

(iii) Hence, for O the origin, show that $|OQ| \cdot |OR|$ is a constant.

(c)

The area bounded by the ellipse $x^2 + 4y^2 = 4$ is rotated about the line x = 3 to form an oblate torus.

(i) Using the method of cylindrical shells, show that the volume V of the torus is given by the integral

$$V = 2\pi \int_{-2}^{2} (3-x)\sqrt{4-x^2} \, dx$$

(ii) Hence show that $V = 12\pi^2$.

3

Examination continues on next page ...

JRAHS Trial HSC 2017 Mathematics Extension 2 Page 11 of 16

QUESTION FOURTEEN (15 Marks) Use a SEPARATE writing booklet.

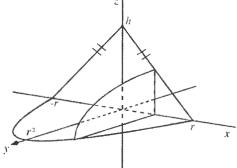
Marks

3

- (a) Define $P(x) = x^3 2x^2 + 3x + 2$ and let α, β, γ be the roots of P(x) = 0.
 - (i) By considering $\alpha^2 + \beta^2 + \gamma^2$, explain why P(x) = 0 has only one real solution.
 - (ii) Find the monic polynomial having roots $\alpha\beta$, $\alpha\gamma$, $\beta\gamma$. 3
- (b) An object of mass m kg is launched vertically upward into a resistive medium. It reaches a maximum height H metres and then descends vertically downward. In both the upward and downward motions, the object experiences a resistive force of magnitude mkv^2 where v m/s is the velocity of the object and k > 0 is a constant. The only other force acting on the object is that due to gravity, which exerts an acceleration of magnitude g m/s².
 - (i) If the object is launched with an initial velocity of u m/s, show that the maxi-3 mum height reached is

$$H = \frac{1}{2k} \log_e \left(1 + \frac{k}{g} u^2 \right)$$

- (ii) After reaching its maximum height, the object descends.
 - (a) Explain why the terminal velocity of the object is $\sqrt{\frac{g}{L}}$
 - (β) Show that the falling time t is given by


$$t = \frac{w}{2g} \log_e \left(\frac{w+v}{w-v} \right)$$

where w is the terminal velocity.

Mathematics Extension 2

Page 12 of 16

(c) z

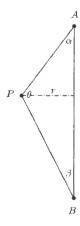
A solid is formed with a parabolic base having equation $y=r^2-x^2$. A typical vertical cross-section, taken perpendicular to the x-axis, is that of a quarter of an ellipse with one semi-axis bounded by the parabola and the other semi-axis bounded by the side of an isosceles triangle having height h and base length 2r. Find the volume of the solid given that the area of an ellipse is πab , where a and b are the lengths of the semi-major and semi-minor axes.

Examination continues on next page ...

JRAHS Trial HSC 2017

Mathematics Extension 2

Page 13 of 16


QUESTION FIFTEEN (15 Marks) Use a SEPARATE writing booklet.

Marks

3

3

(a)

The diagram above shows an object of mass m kg fixed at a point P between two light, taut strings AP and BP. The length AB corresponds to a fixed rod in line with the vertical. The mass rotates in a horizontal circle at uniform speed. The construction forms a triangle with $\angle PAB = \alpha$, $\angle PBA = \beta$ and $\angle APB = \theta$. Let the distance from P to AB be r metres, and let the tensions supplied by strings AP and BP be T and U respectively. Also, let ω rad/s be the angular speed and g m/s² the magnitude of the acceleration due to gravity.

(i) Show that the tensions supplied by the strings are:

$$T = \frac{m(r\omega^2 \cos \beta + g \sin \beta)}{\sin \theta}$$

and

$$U = \frac{m(r\omega^2 \cos \alpha - g \sin \alpha)}{\sin \theta}$$

(ii) For the case where $\theta = \frac{\pi}{2}$, show that the system must have

$$\frac{\omega^2}{g} \ge \frac{AB}{AP^2}$$

for both strings to remain taut.

JRAHS Trial HSC 2017 Mathematics Extension 2 Page 14 of 16

- (b) Define $P(z) = z^5 1$ where z is complex.
 - (i) Use de Moivre's theorem to find the roots of P(z) = 0.
 - (ii) Express P(z):
 - (α) as a product of real linear and irreducible factors;
 - (β) in the form P(z) = (z-1)Q(z) where Q(z) is a polynomial in z.

2

2

- (iii) Hence show that $\left(1+\cos\left(\frac{2\pi}{5}\right)\right)\left(1+\cos\left(\frac{4\pi}{5}\right)\right)=\frac{1}{4}$
- (c) (i) Given $\frac{1}{3}(x+y+z) \geq (xyz)^{1/3} \label{eq:continuous}$

for all x, y, z non-negative real numbers, show that

$$xy + yz + zx \ge 3(xyz)^{2/3}$$

(ii) Hence show that

$$xyz \le (a-1)^3$$

if $1 + (x + y + z) + (xy + yz + zx) + xyz = a^3$ where $a \ge 2$ is a real number.

Examination continues on next page ...

JRAHS Trial HSC 2017 Mathematics Extension 2 Page 15 of 16

QUESTION SIXTEEN (15 Marks) Use a SEPARATE writing booklet.

Marks

(a) Define the integral I_n by

$$I_n = \int_0^{\pi} f_n(x) \sin x \, dx$$

where n is a non-negative integer and where $f_n(x)$ is an n-times differentiable function on the real numbers such that $f_n^{(k)}(0) = f_n^{(k)}(\pi) = 0$ for all integers $k = 0, 1, 2, \ldots, n$ where $f_n^{(k)}(x)$ is the kth derivative of $f_n(x)$.

- (i) Using integration by parts, show that $I_n = -\int_0^\pi f_n^{(2)}(x) \sin x \, dx$.
- (ii) If $f_n(x) = \frac{(\pi x x^2)^n}{n!}$, show that

$$I_n = (4n - 2)I_{n-1} - \pi^2 I_{n-2}$$

(iii) Use strong induction to prove that for all integers $n \ge 2$, the recursion formula in (ii) generates polynomials in π of the form,

$$I_n = \sum_{k=0}^n c_k \pi^k$$

having all integer coefficients c_k and with degree at most n. You may assume that $I_0=2$ and $I_1=4$, and that each iteration generates a polynomial in π that may have differing coefficients to the last. Hence, if I_n is as given above, then I_{n+1} would be of the form $I_{n+1}=\sum_{k=0}^{n+1}d_k\pi^k$ where c_k and d_k are not necessarily equal for $k=0,1,2,\ldots,n$.

- (b) This section will make use of the results determined in part (a). Assume that $\pi = \frac{a}{b}$ where a and b are both positive integers, and construct a sequence of numbers z_n where $z_n = b^n I_n$ for n a non-negative integer.
 - (i) By considering I_n in its polynomial form, explain why z_n must be an integer.
 - (ii) By considering I_n in its integral form, explain why z_n must be positive.

Mathematics Extension 2

Page 16 of 16

(iii) It can be easily shown that the integrand of I_n obtains its maximum at $\frac{\pi}{2}$. Given that if $f(x) \leq g(x)$ over an interval $[\alpha, \beta]$, then $\int_{\alpha}^{\beta} f(x) dx \leq \int_{\alpha}^{\beta} g(x) dx$, show that

$$0 < z_n \le \left(\frac{b\pi^2}{4}\right)^n \frac{\pi}{n!}$$

(iv) Hence given $\lim_{n\to\infty} \frac{c^n}{n!} = 0$ for c a constant, show that π is irrational.

END OF EXAMINATION

2.4.4			
Mea			
1 C	,		
2 3			
3 A			
4 B			
5 C			
6 A	17-1-18-18-18-18-18-18-18-18-18-18-18-18-1		•
7 D			
8 D			
_	•		
10 B		,	
		, , , , , , , , , , , , , , , , , , , ,	
	The state of the s		

.

MATHEMATICS X2 2017 trial: Ques		(of 3
Suggested Solutions	Marks	Marker's Comments
$\int_{0}^{a} f(x-x) dx = \int_{0}^{a} f(x) - dx$ $= \int_{0}^{a} f(x) dx$	1	fairly welldone
$= \int_{0}^{\infty} \frac{\cos^{n}(\frac{\pi}{2} - x)}{\sin^{n}(\frac{\pi}{2} - x)} dx$ $= \frac{\pi}{2} \int_{0}^{\infty} \frac{\sin^{n} x \cdot \cos^{n}(\frac{\pi}{2} - x)}{\cos^{n} x \cdot \sin^{n} x} dx$ $= \frac{\pi}{2} \int_{0}^{\infty} \frac{\cos^{n} x \cdot dx}{\cos^{n} x \cdot \cos^{n} x} dx + \int_{0}^{\infty} \frac{\sin^{n} x \cdot \cos^{n} x}{\sin^{n} x \cdot \cos^{n} x} dx$	1.	students equeto integrals instead of adding them
= The sinhic teashill doll = The dic	1	
$= T_2$ $I = T_4$	1	A number of students failed to divide by 2

MATHEMATICS X2 2017 trial : Qu		1 11 1 2
Suggested Solutions	Marks	Marker's Comments
$I_n = \int_{\mathcal{X}} n_e^{\chi} d\chi$		
(i) $u=x^n$ $dv=e^x dx$		
$du = nx^{n-1}dx$ $V = e^{x}$	1	
$I_n = \left(x^n e^x\right]_0^1 - n \int_0^1 e^x x^{n-1} dx$		
$=(e-0)-nI_{n}-1$		
$=e-nI_{n-1}$	1	
(ii) Io= Sxoexdx		
$= \int_{0}^{\infty} e^{x}$		
= e-1	1	poor algebraic
$I_1 = e - I_0$		skills cont studences y marks.
= e-e+1		some students
$I_2 = e - nI_1$ = $e - 2(1)$		of substituting.
b) (c) a(1	J.
b) (c) a $f(a-x)dx$		
let $u=q-x$ then $1=q-u=q$ x=q-u=q		
du = -d)(1	

T:\Teacher\Maths\marking templates\Suggested Mk solns template_V2_no Ls.doc

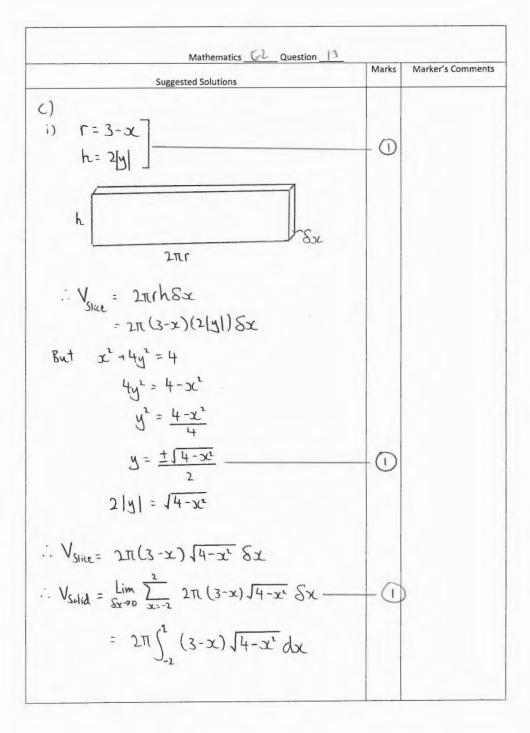
Suggested Solutions	uestion 11 Marks	Marker's Comments
(i) y=loge fln)	2	Ifor two correct parts 2 for correct with 1-2 and correct concavit from 2 to 3.
$y = \frac{1}{f(n)}$	2	1 for two cirrect ports 2 for correct with labelled ports correct concerty
$(iii) y^2 = f(x)$	2.	As above some relate failed to do reflection concavity from 2 to 3 was 1-correct.

Suggested Solutions	Marks	Marker's Comments
a) $z^{2} + iz + 1 = 0$ $z = -i \pm \sqrt{i^{2} - 4}$ $z = -i \pm \sqrt{-5}$ $z = -i \pm i\sqrt{5}$	1	
$\frac{2}{1.2} = -i(1+\sqrt{5}) \text{ or } -i(1-\sqrt{5})$	1	
b) 4 2 2 Re(2)		I correct region I correct circles & lines with correct labels & sale
arg \vec{O} = $\tan^{-1}\left(\frac{12}{3}\right)$ $= \frac{\pi}{4}$		

T:\Teacher\Maths\marking templates\Suggested Mk solns template_V2_no Ls.doc

MATHEMATICS Extension 2: Question	2	G
Suggested Solutions	Marks	Marker's Comments
:. LxPO = The (alternate angles, parallel :. LxPO = The lines) = The lines		
$\therefore LQPY = \frac{2\pi}{3} \text{ (angle sum of LXPY is π)}$	1	
	1	
	1	
OR $ \overrightarrow{OP} = 3$ $ \overrightarrow{OP} = 3 \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}\right)$ $ \overrightarrow{PQ} = 3 \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}\right)$ $ \overrightarrow{PQ} = \frac{2}{3} \times \left(-3 \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}\right)\right)$	1	
$x\left(\cos\left(-\frac{i\pi}{12}\right) + i\sin\left(-\frac{i\pi}{12}\right)\right)$ $= -2\left(\cos\left(-\frac{\pi}{2}\right) + i\sin\left(-\frac{\pi}{2}\right)\right)$ $= -1 + i\sqrt{3}$ $\therefore \vec{OQ} = \vec{PQ} + \vec{OP}$ $= as above$	1	

MATHEMATICS Extension 2: Question Suggested Solutions	Marks	Marker's Comments
1) X To = X R		
E B B J		
i) LPEM = LMER = 90° (EQ is altitude of APRQ) LRDM = LQDM = 90° (PD is altitude		
of APQR)		
PQDE is cyclic (PQ subtends equal angles on the same side at E and D)	١	
LREM + LRDM = 180° REMD is cyclic (apposite angles	1	
ii) let LKRP = x LKRP = LKQP = x (angles at the		
circumference standing on the same arc)	1	
Similarly in cyclic quad PQDE, LPQE = LPDE = X		
Similarly in cyclic quad REMD, LMDE = LMRE = X		
LKRP = LMRE = L PR bisects LKRM	1	


Suggested Solutions	Marks	Marker's Comments
iii) let LRKJ = B LRKJ = LRPJ = B (angles at the circumference Standing on the same arc) similarly in cyclic quad Pade, LRPJ = LEAD = B	1	Another common proof: LRPJ = LKQR : arc KR = arc RJ
similarly in cyclic quad KRQP, LEAD = LKJR = p LRKJ = LRJK = B KR = JR (equal sides are opposite equal angles in AKRJ	1	(equal angles at the circumfere subtend equal arcs) NOT CHORD KR=RJ (equal arcs
e) since they are all identical then the only possible ways are: 1, 1, 5 1, 2, 4 1, 3, 3 2, 2, 3 4 ways	2	subtend equal chords)

Mathematics 642 Question 13.		
Suggested Solutions	Marks	Marker's Comments
(a) $P(x) = x^4 - 8x^3 + 18x^2 - 27$		
$P'(x) = 4x^3 - 24x^2 + 36x$		
P"(x) = 12x2 - 48x +36		
P'''(x) = 24x - 48		
$\beta'''(x) = 0 \longrightarrow x=2$		
$P''(x) = 0 \rightarrow 12x^2 - 48x + 36 = 0$		
$x^2 - 4x + 3 = 0$		
(x-3)(x-1)=0		
X=3 or 1	À	, time you
Check P'(3) = 4(3)3-24(3)2+36(3)	4	x=3 as a
= 108 - 216 + 108	0	n to PUU,
/ = 0		or P"(x)
P(3) = (3) -8(3) +18(3) -27		
= 81 - 216 + 162 - 27		
= O		
: . X=3 is the multiple root with		
multiplicity 3	-0	

Mathematics Question 13 Suggested Solutions	Marks	Marker's Comments
b) i) $x = asec0$, $y = btan0$ $\frac{dx}{d0} = a(sec0tan0)$ $\frac{dy}{d0} = bsec^20$		
$\frac{dy}{dx} = \frac{dy}{dx} \times \frac{dx}{dx}$		
= bsec20 "l a secotoria		
= bseco atano	-0	
Egn of tangent:		
(y-btono) = bseco (x-aseco)		
aytano - abtanzo = bxseco - abseczo		
bxseco-aytono = abseco - abtano		
bxseco-aytano = ab (seco-tano)	-0	
bxseco - aytano = ab		

Suggested Solutions	Marks	Marker's Comments
ii) Asymptotes at $y = \pm \frac{bx}{a} - Egn 1$		
Sub Egn 1 into tangent:		
$\therefore bx \sec \alpha - a \left(\pm \frac{b}{a} x \right) \tan \alpha = ab$		
bx seco = bx tano = ab		
xseco = xtano = a		
$x = \frac{a}{Seco \mp tano}$	-0	
= a(Seco = tano) (Seco = tano)(Seco = tano)		
= a (seco ± tano)		
when x = a(seco + tano)		
$y = \frac{b}{a} \times \alpha(\sec \alpha + \tan \alpha)$		
= b (seco + tano)		
: Q [a (seco + tand), b (seco + tono)] -	+0	
When I = a (Seco - tano)		
$y = \frac{-b}{a} (a seco - tano)$		
= -b(seco-tano)		
: R [a(seco-tano), -b(seco-tano)]-	+(1)	

i) $ Oa = \sqrt{[a(seco + tand) - o]^2 + [b(seco + tand) - o]^2}$ $= \sqrt{(seco + tand)^2 (a^2 + b^2)}$ $= \sqrt{a^2 + b^2} seco + tand $ $ OR = \sqrt{[a(seco - tand) - o]^2 + [b(seco - btond) - o]^2}$ $= \sqrt{(seco - tand)^2 (a^2 + b^2)}$ $= \sqrt{a^2 + b^2} seco - tand $	Mathematics E2 Question 13	Marks	Marker's Comments
$= \int (\sec a + \tan a)^{2} (a^{2} + b^{2})$ $= \int (a^{2} + b^{2}) \sec a + \tan a $ $ OR = \int [a(\sec a - \tan a)^{2} (a^{2} + b^{2})$ $= \int (a^{2} + b^{2}) \sec a - \tan a $ $= \int a^{2} + b^{2} \sec a - \tan a $ $= a^{2} + b^{2} \sec a - \tan^{2} a $ $= a^{2} + b^{2}$ Which is a constant Note: If you found $ Oa ^{2} + OR ^{2}$ without giving any explanation / conclusion	Suggested Solutions		
$ OR = \sqrt{[a(seco + tano] - o]^2 + [b(seco - btono) - o]^2}$ $= \sqrt{(seco - tano)^2 (a^2 + b^2)}$ $= \sqrt{a^2 + b^2} seco - tono $ $ Oa + or = (a^2 + b^2) sec^2o - tan^2o $ $= a^2 + b^2$ Which is a constant Note: If you found $ Oa ^2 + or ^2$ without giving any exploration / conclusion	11) OQ = 1 [a(seco+tand)-0] + [b(seco+tand)-0]		
$ OR = \sqrt{[a(seco - tano) - o]^2 + [b(seco - btono) - o]^2}$ $= \sqrt{(seco - tano)^2 (a^2 + b^2)}$ $= \sqrt{a^2 + b^2} seco - tano $ $ Oa + oR = (a^2 + b^2) sec^2o - tan^2o $ $= a^2 + b^2$ Which is a constant Note: If you found $ Oa ^2 + OR ^2$ without giving any explanation / conclusion	= $\sqrt{(seco + tano)^2 (a^2 + b^2)}$		
$= \int (\sec a - \tan a)^{2} (a^{2} + b^{2})$ $= \int a^{2} + b^{2} \sec a - \tan a $ $= a^{2} + b^{2}$ Which is a constant Note: If you found $ a ^{2} + a ^{2}$ without giving any explanation / conclusion	= Ja2+b2 seco + tano	- ①	
= $\sqrt{a^2 + b^2}$ Seco-tono [Oal+ orl=(a^2+b^2) Sec^2a - tan^2a = a^2+b^2 Which is a constant Note: If you found $ Oal^2 + Orl^2 $ without giving any exploration / conclusion	OR = \[a(seco - tano) - 0]2 + [b(seco - btono) - 0]		
Note: If you found Oal - lord without giving any exploration / conclusion	= $\int (Seco - tand)^2 (\alpha^2 + b^2)$		
Which is a constant Note: If you found OQ 2 - OR 2 without giving any explonation/conclusion	= Ja2+ b2 Seco-tono		
Which is a constant Note: If you found OQ + OR without giving any explonation / conclusion	: 0a + op = (a2 + b2) sec20 - tan20		
Note: If you found OQ = OR without giving any explonation/conclusion	= 2+62	-0	
without giving any explonation/conclusion	which is a constant		
without giving any explonation/conclusion	Alto TE was found logit - lori		
you miss the last mark.			
	you miss the last mark.		

Mathematics CL Question 3 Suggested Solutions	Marks	Marker's Comment
(i) $V = 2\pi \int_{-2}^{2} (3-x) \sqrt{4-x^2} dx$		
$= 2\pi \int_{-2}^{2} 3\sqrt{4-x^{2}} dx - 2\pi \int_{2}^{2} x\sqrt{4-x^{2}} dx$		-(1)
$= 6\pi * \frac{\pi(2)^{2}}{2} - 2\pi \int_{-2}^{2} x \sqrt{4-x^{2}} dx$		
Area of semi-circle with radius 2	0	
= 12T1 - 2T1 2 x 14-x2 du	-0	
= 12 Th2 - O Odd function		
= 12T2 with symmetrical limits		

MATHEMATICS Extension 2: Question. l	t	1/5
Suggested Solutions	Marks	Marker's Comments
(a) $P(x) = x^3 - 2x^2 + 3x + 2$		
Q 2+B2+82=(d+B+8)2-2(dB+B8+0	(X) .	7
$= 2^2 - 2(3)$		
= -2		needed the
If L, B, 8 are all real, then ditp+827	0	to get the
but this is not true so at least one roat		mark.
must be complex. The coefficients of P(x) are all ration	امر	
so the complex rods must occur in		
conjugate pairs, so there are 2 complex		
roots and I real root.	0	
(i) roots are dp, px, 8d		
LBX=-d/a=-2/1=-2		
·· +B==2, B8==2, 82==B		
50b in y=-== ie x=-===	0	
$P(-\frac{2}{3}) = (-\frac{2}{3})^3 - 2(-\frac{2}{3})^2 + 3(-\frac{2}{3}) + 2$		
-: 0= -8ys - 8yz - 8y + 2		
$0 = -8 - 8y - 6y^2 + 2y^3$	0	
· · · O = -4 - 4y - 3y2 + y3		
$P(x) = x^3 - 3x^2 - 4x - 4$	(du	umy variable)
		stidents lost
		ark because
Y.		mial wasn't mor

T:\Teacher\Maths\marking templates\Suggested Mk solns template_V2.doc

MATHEMATICS Extension 2: Question	n. H. Cont.	2/5
Suggested Solutions	Marks	Marker's Comments
by $\dot{y} = -mg - mkv^2$ (Nauton $\dot{x} = -g - kv^2$) $\dot{x} = -g - kv^2$ $\dot{y} = -g - kv^2$ $\dot{y} = -(g + kv^2)$ $\dot{y} = -dx$'s 2nd L	.crus)
$\int_{0}^{\infty} \frac{\sqrt{dv}}{g + Kv^{2}} = \int_{0}^{\infty} -dx$ $-\frac{1}{2} \left[\ln \left(g + Kv^{2} \right) \right]_{u}^{\infty} = \left[z \right]_{0}^{H}$	0	
H-0 = = = [Ing - In (g+ ku2)		
$= \frac{1}{2k} \ln \left(\frac{9}{9 + ku^2} \right)$ $= \frac{1}{2k} \ln \left(\frac{9 + ku^2}{3} \right)$ $= \frac{1}{2k} \ln \left(1 + \frac{k}{3} u^2 \right)$	0	
(i) (d) — x=0 Mix = mg - mkv² Img at terminal velocity x = i 0 = mg - mkv² Mg = mkv² Y = Jak Y = Jak		
(B) we need $t = f(v)$ so use $\dot{x} = g$ $\frac{dv}{dt} = g - kv^2$ $\int_0^\infty \frac{dv}{2^k k^2} = \int_0^\infty dt$		very body done and terrible setting out IIII. If stidents star with Volk or distribution than the scored zero m

	MATHEMATICS Extension 2: Question		3/5
	Suggested Solutions	Marks	Marker's Comments
now	$\frac{1}{g-kv^2} = \frac{A}{Jg+Jkv} + \frac{B}{Jg-Jkv}$		
	1=AJg + BJg · · · · · · · · · · · · · · · ·		
	1 = A(Jg - JK) + B(Jg + JK) @ from (D 1 - BJg = AJg		
	ig - B = A		
	1 = (ty - B) (vg - 5 k) + B(5 + FE)	
	$1 = (J_3 - B)(J_3 - B)$	Ja +BJR	
	0 LE + 285K	0	
	B = 25		
	$O = -\frac{1}{3} + 283K$ $O = -\frac{1}{3} + 283K$ $O = \frac{1}{3} + \frac{1}{3} = \frac{1}{3}$ $O = -\frac{1}{3} + \frac{1}{3} = \frac{1}{3}$		
	$00 \int \frac{dV}{5-Kv^2} = \frac{1}{2Jg} \int \sqrt{Jg-Jkv} + \frac{1}{Jg+Jk}$	~) 2~	D sudets who
	-: 2/g ((1/3-1/kv + 1/3+1/kv) dv = fdt	7 4	lost their constant
	25gTR [-In (vg-JRV)+In (g+JRV)	7)=-	
	: + = 25 TK [10 (3-1K)]	-	
	+ = zygik [In (19-184) - In (19		* If you froger the
	t= == = = = = = = = = = = = = = = = = =		* If you fully the answer the Dyou lost Danother mark
	= \frac{\sqrt{3k+v}}{2g}\n(\frac{\sqrt{3k+v}}{3k-v})		
	= wy lo (w+v)		

Teacher Maths marking templates\Suggested Mk solns template_V2.doc

Teacher Maths marking templates\Suggested Mk solns template_V2.doc

$$\begin{array}{lll}
\left(P - \frac{dv}{\partial t} = g - kv^{2}\right) & = k\left(\frac{g}{k} - v^{2}\right) \\
& = k\left(\frac{g}{k} - v^{2}\right) & \text{Shere } w = \sqrt{\frac{g}{k}} \\
\int \frac{dv}{w^{2} - v^{2}} & = \int \frac{k}{k} dt & = \frac{g}{k} \\
det & \frac{1}{w^{2} - v^{2}} & = \frac{A}{w - v} + \frac{B}{w + v} \\
& A(\omega + v) + B(\omega - v) = 1
\end{array}$$

$$\begin{array}{lll}
v = W \Rightarrow & A = \frac{1}{2w} \\
V = -W \Rightarrow & B = + \frac{1}{2w}
\end{array}$$

$$\begin{array}{lll}
\frac{1}{2w} \int \frac{dv}{u - v} - \frac{1}{2w} \int \frac{dw}{w + v} & = \int \frac{k}{k} dt
\end{array}$$

$$\begin{array}{lll}
\frac{1}{2w} \left\{ -\ln\left(w - v\right) + \ln w + \ln\left(w + v\right) - \ln w \right\} & = kt
\end{array}$$

$$\begin{array}{lll}
\frac{1}{2w} \left\{ -\ln\left(w - v\right) + \ln w + \ln\left(w + v\right) - \ln w \right\} & = kt
\end{array}$$

$$\begin{array}{lll}
\frac{1}{2w} \left\{ -\ln\left(w - v\right) + \ln w + \ln\left(w + v\right) - \ln w \right\} & = kt
\end{array}$$

$$\begin{array}{lll}
\frac{1}{2w} \left\{ -\ln\left(w - v\right) + \ln w + \ln\left(w + v\right) - \ln w \right\} & = kt
\end{array}$$

$$\begin{array}{lll}
\frac{1}{2w} \left\{ -\ln\left(w - v\right) + \ln w + \ln\left(w + v\right) - \ln w \right\} & = kt
\end{array}$$

$$\begin{array}{lll}
\frac{1}{2w} \left\{ -\ln\left(w - v\right) + \ln w + \ln\left(w + v\right) - \ln w \right\} & = kt
\end{array}$$

$$\begin{array}{lll}
\frac{1}{2w} \left\{ -\frac{1}{2w} \left[\frac{1}{2w} \left[\frac{1}{2w$$

MATHEMATICS Extension 2: Question.	CON	5/5
Suggested Solutions	Marks	Marker's Comments
Vslice = 7 Tab DX		man methods
$\alpha = r^2 - z^2 - r \cdot 1$		
=-mx+h (m is grad =-mx+h (m is grad =-mx+h	eit	
we=p w=p		
ニュータメナり		
when z=b		
sub lata Vatice		
12 Vslice = T (r2-x2)(-1-x+h)d>	_	0
= ht (-= +1Xr2-2) 0x	-	
$=\frac{h\pi}{4}\left(c^{2}-x^{2}-xc+\frac{x^{3}}{c^{2}}\right)$	x	
Vsolid = 2x lim & Th (12-2-x1-	一点) A =
x The solid is symmetrical, so total V is	tui c	e volume of one hill
$V = \prod_{\alpha} \left((r^2 - \chi^2 - \chi r + \frac{\chi^2}{r}) d\chi \right)$		
= Th (2x - 1x3 - 2x2 + 40)	£ \$ 50	0
= Th [+- 3+ -2+++++-0]]	
$=\frac{\pi h}{2r} \times \frac{5}{12}r^4 = 5hr^3\pi$		
Teacher Vi wha marking templates/Suggested Mk solns template_V2.doc		

2017	5	TRAHS TRIAL MATHEMATICS Extension 2: Question!
Marker's Comments	Marks	Suggested Solutions
For all this!	1	(11) $T>0$ and $U>0$ must hold $\Rightarrow m(\frac{w^2r(\omega)\alpha - g\sin\alpha}{\sin\theta}) \ge 0$ Sin θ But $\theta = \sqrt{2}$ \Rightarrow $\sin\theta = 1$
or tand	1	$\Rightarrow \frac{w^2}{g} > \frac{\sin \alpha}{\tau \cos \alpha}$
For correctly expressing		But $Sin \alpha = \frac{r}{AP}$ and $Cos \alpha = \frac{AP}{AB}$
		$\frac{w^{2}}{g} > \frac{\sqrt[n]{AP}}{\sqrt[n]{AP/AB}}$ $= \frac{AB}{AP^{2}}$
		$=\frac{AB}{Ap^2}$

- rage 2 -

-	1	age	5	-
	•	MIL		

JRAHS TRIAL MATI	HEMATICS Extension 2: Question	Marks	2017 Marker's Comments
b) (i) $P(z) = 0 \Rightarrow$			
$\int_{0}^{\infty} \theta = 2$	5		
If R=0,1,2,314 Z,=1	If $k = 0, \pm 1, \pm 2$ 2 = 1		
t2 = cis (2175).	72 = cis (217/5)	-	for all this!
えz = cis (智)	$\frac{2}{3} = \text{cis}(-2\pi 7_5)$		tor au ois;
= cis (87/5)/	25 = cis (-4775)		
Jote: Conjugate Pain	s Zz and Zz		Note: $(k=0,\pm)$ $\frac{1}{2}$ + $\frac{1}{2}$ = 2 co $\frac{2}{3}$
tz and ts	ty and ts		$z_1 \times z_3 = 1$
Check: 22 = 60 2775.			If 72 and 7, are conjugate
	75) + i sin (-275) 5 - i sin 2775		pairs

TRAHS TRIAL MATHEMATICS Extension 2: Question	15	2017
Suggested Solutions	Marks	Marker's Comments
P(t) = (t-2)(t-2)(t-2)(t-2)(t-2)(t-2) $= (t-1)(t-a) = (t-1)(t-a)(t-2)(t-a)(t-a)(t-a)(t-a)(t-a)(t-a)(t-a)(t-a$	77 +	

TRIALS MATHEMATICS Extension 2: Question... 15 2017

TRAHS TRIALS MATHEMATICS Extension 2: Question... S. 2017

Suggested Solutions Marks Marker's Comments

b 111) Hence \Rightarrow use earlier results

Using (\angle) and (β): Method \bot :

($\cancel{2}$ -1)($\cancel{2}$ ⁴+ $\cancel{2}$ ³+ $\cancel{2}$ ²+ $\cancel{2}$ +1) = ($\cancel{2}$ -1)($\cancel{2}$ ²-2+ $\cancel{2}$ - $\cancel{2}$ - $\cancel{3}$ -1) ($\cancel{2}$ ²-2+ $\cancel{3}$ - $\cancel{4}$ - $\cancel{4}$ -1)

Choose $\cancel{2}$ =-1:

 $(-2)(1-1+1-1+1) = (-2)(1+260\frac{7}{2}+1)(1+260\frac{47}{2}+1)$ $1 = (2+260\frac{27}{2})(2+260\frac{47}{2})$ $= 4(1+40)\frac{27}{2}(1+40)\frac{47}{2}$

⇒ (1+の学)(1+の学)=4

Method II: (Sum and Product of Roots)

25-1=0

25+024+023+022+02'-1=0

 \Rightarrow a=1, b=c=d=e=0, f=-1

- lage 6-		
JRAHS TRIALS MATHEMATICS Extension 2: Question!	Marks	2017 Marker's Comments
Suggested Solutions Sum of Root (one at a time) = $-\frac{b}{a} = 0$	-	warker's Comments
⇒ cis 平 + cis (学) + cis (华) + cis (华) +1	=0	
⇒ 60架+60架+60架=-1		
⇒ の等+の等=-1	-0	
Sum of Roots (taken 2 at a time) = a	= 0	>
Jet x = 2175, B = 4775		
\Rightarrow cis α cis $(-\alpha)$ + cis α cis β + cis α cis $(-\beta)$ +	cis (-	c) cis (-p)
cis (-x) cis p + cisp cis(-p) + cisx.1+	cis (-	~)·1
+ cis p.1 + cis (-	B).1	= 0
Now cis(-x).cis(x)=1		
$cis(-\beta)$. $cis(\beta) = 1$		
and eis $\alpha + cis(-\alpha) = 2$ cord		
$cis \beta + cis (-\beta) = 2 \cos \beta$		
=> cisa+cis(-x)+cisp+cis(-p)=2(4	DX+	$(or \beta) = -1$

JRAHS_	TRACS MATHEMATICS Extension 2: Question	n	2017 Marker's Comments
Hence	Suggested Solutions	Marks	Marker's Comments
	s (cis x + cis (-x)) + cis (-B) (cis x	e + cis 6	-x))+1-1=C
$\Rightarrow [c]$	is a + cis (-a)][cis p + cis(-p)]	= -1	
	or 60 x. 60 B = - 4		
	1.e (a) $\frac{2\pi}{5}$ (b) $\frac{4\pi}{5} = -\frac{1}{4}$	2	
:. (I+	的等)(1+的智)		
= 1+	किया + किया + किया . कि	5	
= 1+	(-1) + (-1) using () 4	2 :	
= 1/4	as required		
Note	: Product of all 5 roots will not be useful!		
	Why?		

TRAHS TRIALS MATHEMATICS Extension 2: Question	n. 15	2017
Suggested Solutions	Marks	Marker's Comments
Method III:		
Pat Z = i into		
(24+23+2+2+1)=(2-2260学+1)	$)(7^{2}-2i$	16年1
·e. (1-i-1+i+1) = (-1-2i的平+1)	1/-1 - 22	co 4 +1)
		3 /
1 = -4 60 2 5. 60 41		
3 3		
giving 60) 211. 60) 411 = -1	- Simil	as to sum
0 8 5 5 4	of	30ts taken
		t a time
2	a m	u ume
Now use sum of roots taken		
once which gives con 2 + con 4 ==	-1	
5	2	
So it is then easy to show		
(1+四型)(1+四型)=1.		

_	ı	uge	7	_	
---	---	-----	---	---	--

TRAHS TRIALS MATHEMATICS Extension 2: Question!	5	2017
Suggested Solutions	Marks	Marker's Comments
(c) (1) $\frac{1}{3}(x+y+z) \ge (xyz)^{1/3}$ given $x,y,z \in \mathbb{R}^+$		
$\Rightarrow \chi + \chi + \chi \geq 3(\chi + \chi)^{\frac{1}{3}}$		
Consider groups $x = xy$		
y = y3 3 = 223		
:. > 14 + 43 + > 3 (> 14. 43. > 3 (> 14. 43. > 3)	$)^{\frac{1}{3}}$	
$= 3(x^2, y^2, z^2)$	3	
$= 3(xy_3)^{2/3}$	•	
Hence		
$xy+yy+xz \geq 3(xy3)^{73}$		

1 age 10 -		
TRAHS TRIALS MATHEMATICS Extension 2: Question Suggested Solutions	15 Marks	2017 Marker's Comments
C(II)		Market 8 Comments
$a^3 = (x+y+3) + (xy+y3+x3) + xy$	3+1	
$\geq 3(xy_3)^{\frac{1}{3}} + 3(xy_3)^{\frac{2}{3}} + xy_3$	+1.	using (i)
$= 1 + 3(xy3)^{\frac{1}{3}} + 3(xy3)^{\frac{2}{3}} +$	xy:) st
= [1 + (xy3)/3]3		and mark
⇒ a > 1+ (xyz) 1/3		,
or (Ecy3) 1/3 < 9-1		
⇒)(y ₃ < (a-1) ³		
Method II: Consider xyz-(a-1)3		
Method III: By Contradiction 1.e Assume 2(yz > (a-1) ²	?	

MATHEMATICS Extension 2: Question 1	6	0
Suggested Solutions	Marks	Marker's Comments
$= \left(f_{n}(x) \right) \left(-\cos x \right) \int_{0}^{17} + \int_{0}^{17} f_{n}(x) \cos x dx$ $= \left(f_{n}(x) \right) \left(-\cos x \right) \int_{0}^{17} + \int_{0}^{17} f_{n}(x) \cos x dx$ $= \int_{0}^{17} f_{n}(x) \sin x dx$ $= \int_{0}^{17} f_{n}(x) \sin x dx$ $= \left(f_{n}(x) \sin x \right) \int_{0}^{17} - \int_{0}^{17} f_{n}(x) \sin x dx$ $= \left(f_{n}(x) \sin x \right) \int_{0}^{17} - \int_{0}^{17} f_{n}(x) \sin x dx$	1	had to clearly Indicate who (full) (-air)]o discopporated.
$= 0$ $SInce f_n'(T_i) = f_n'(0) = 0$ $T_n = - \int_0^\infty f_n''(0) S = X$		
$G_{1} = \frac{(\pi x_{1} - x_{2})^{n}}{n!}$ $f_{n}(x) = \frac{(\pi x_{1} - x_{2})^{n-1}}{(n-1)!} (\pi x_{1} - x_{2})^{n-1}$ $f_{n}''(x) = \frac{(\pi x_{1} - x_{2})^{n-1}}{(n-1)!} (\pi x_{1} - x_{2})^{n-1}$ $-2 (\pi x_{1} - x_{2})^{n-1} (n-1)!$. 1	A significant unaber of students lost the (T-2)1) ten.

Marks	Marker's Comments
))	
))	
·	
-2	
)	
(20)	
M-1	
T South	
1-1-10	
1	
,	
	Jan Smide

MATHEMATICS Extension 2: Question	_	(3)
Suggested Solutions	Marks	Marker's Comments
Base case Io=2 I=4 are both polynomicls 1- TT Iz=(4x2-2)I_1=TT^2I_0 = 24-272 which is a polynomial in IT. Assume true for n=k. In=k-1 D In= ZCITK I= Solth k=0	1	Men sholents thed to had Io and I, but it was give -, ostudit got 24-277 del-1 explaint Fishi attack to assume the for two rases
$I_{R+1} = (4n-2)I_{R} - \Pi^{2}I_{K-1}$ $= (4n-2)S_{R}(R) - \Pi^{2}S_{R}dK \Pi^{R}$ $= 0$ $K = 0$		Incorrect limit on signa a communerou
E=0 R=0 R=0 R=0 R=0 R=0 All coefficients in summation are Integers (k de EZ (4-2) EZ Highest possible power on Ti is R-1+L= N+1 So Ip +1 1s a polynomial in Thavir, all integer coefficients a-d deg E htt.	1	preeded and and and third mark.

MATHEMATICS X2 2017 trial: Ques		•
Suggested Solutions	Marks	Marker's Comments
Polynomial in PT over Z then for TI = a In In = N Ck D ak R=0 Polynomial in PT over Z then for TI = a In In = N Ck D ak R=0 Every term is the sum of an In teger Ck, ak, bh-k & Z bh-k & z since on >, R 2 h is an integer (u) 2 n = bh In = bn TT x - x h sinxdx.		needed to state 17k

MATHEMATICS Extension 2 : Ques Suggested Solutions	Marks	Marker's Comments
Now		
TTX-x200 forococcTT		
SINDE DO FOR OCDICAL	1	
TIX-XL SOY 20		
n!		
SO To will be positive		
so IT will be positive.		
(ii) f, (b) = (TIX - 22) SI-26		
tu (1) - (1) SI-1(
n!		
$\leq \left(\prod \times \prod - \left(\prod_{i=1}^{n} \right)^{n} \right)^{n} \leq 1 - \prod_{i=1}^{n} \left(\prod_{i=1}^{n} \right)^{n} \leq $		
nl		
i. A A		
TI SI-X dx E S(II)		
TX-11 SIX OR E / (4)	2	
e (ni) o ni		
$= (n^2)$	1	
$= \left(\frac{\Pi^2}{n!}\right)^{1/2}$		
(n: Jo		
$= \left(\frac{T^2}{4}\right)^n \times TT$		
= (4) × 11		

MATHEMATICS X2 2017 trial: Ques Suggested Solutions	tion 16 Marks	Marker's Comments
$Z_{n} = \frac{\left(\frac{b \pi^{2}}{4}\right)^{n} T}{n!}$ $O \subset Z_{n} \leq \frac{\left(\frac{b \pi^{2}}{4}\right)^{n}}{n!}$	-	
en h from given information i. lin (27) 1 = 0	1	
Now there exists a value for n= N such that (bti2) NT < 1 NI 2 SO we have OCZh C (bti2)N C 1 But 2n is always an integer so conhectished as it can I be an integer. So original a sympton To is transportational is incorrect		